If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2+y-182=0
a = 1; b = 1; c = -182;
Δ = b2-4ac
Δ = 12-4·1·(-182)
Δ = 729
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{729}=27$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-27}{2*1}=\frac{-28}{2} =-14 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+27}{2*1}=\frac{26}{2} =13 $
| (2w-3)*w=209 | | -6(-5x+9)=12x | | 10x-13=4x+8 | | 1+5x=-7=x | | 3x+35=11x-73 | | 5(2p+3)=20 | | k/5-2k+4=10 | | -10-5g=10+5g | | 50+9y-15=180 | | 6z=-6+9z | | 3=2x-3(4x-21) | | 10+5h=-10+7h | | -4x-2(-3-20)=56 | | -139=2x+5(-5x+9) | | -147=-6-3(5x+7) | | 7x-4(-2x-12)=123 | | 52=6x+5(2x+4) | | -21=3x-3(3x-11) | | Y=9^x | | -3x-5(-3x-4)=40 | | 7y-10-y=-10+8y | | w+3/4=24/5 | | 117=5x+2(-7x+9) | | -7x+(-3x-4)=196 | | Y=25x+125 | | 9x+3=93 | | 64=14w-6w | | -9m+1+7m=10-3m | | F(x)=-13/21x+13 | | .05x+.25(x+4)=3.40 | | 8x−20= | | 9-(3)/(4)x=12 |